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HMPA.26 Synthetic m p  184.5-186 OC, [CrIz4D -56' ( c  
0.010, CHC13),27 was identical in all respects (IR, UV, MS, 
'H N M R ,  I3C NMR, [ & I D ,  mixture melting point) with a n  
authentic sample of A-23187. This study establishes the ab- 
solute configuration of A-23 187 as  that depicted in structure 
la .  

Further studies a re  in progress to enhance the aldol diast- 
ereoselection (3  + 16 -, 18) via the use of boron enolates.2x 
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Preparation and Properties of a 
Chlorophyllide-Apomyoglobin Complex 

Sir: 
The spectroscopy of large molecules like chlorophyll poses 

a number of problems because it is difficult to obtain a trans- 
parent host matrix for single-crystal optical and magnetic 
resonance investigations. In order to surmount this problem 
we have pursued the simple subterfuge of substituting chlo- 
rophyll derivatives in the place of heme in the protein 
apomyoglobin (apoMb). Myoglobin (Mb) is ideal because it 
is available in large quantities, is readily crystallizable, and has 
a very well-characterized crystal structure.'.* Our goals are  
to determine precisely the geometric relationships between the 
chlorophyll molecular structure and (1 )  the orientations of 
transition dipole moments for the lowest singlet excited states, 
(2) the principal axis systems of the g and hyperfine tensors 
in the radical ions, and (3) the principal axis system of the 
zero-field tensor in the lowest triplet excited state. Each of 
these relationships is required for an analysis of recent pho- 
toselection experiments on bacterial photosynthetic reaction 

A single crystal of this type is very well suited for 
studies of energy transport, since the chromophores should 
interact weakly and are regularly separated (in this respect the 
protein host is much superior to typical lattices, because of the 
large size of the unit cell and regular site substitution). Fur- 
thermore, a well-defined water-soluble chlorophyll-protein 
complex offers many interesting possibilities for electro- 
chemical and photochemical studies. We report here the 
preparation and characterization of the complex in solution. 

Zincx or magnesium p y r o c h l o r o p h y l l i d e ~ ~ ~ ' ~  (R1 in Figure 
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R ,  = C O O H  

R2 = CONHCH2CH2-N 

Figure 1.  Structure and numbering system for pyrochlorophyll derivatives. 
Y and X label the commonly assumed orientations for the transition dipole 
moments of the first and second singlet excited states, respectively. 

1, Zn- or Mg-PChl), the corresponding metalated protopor- 
phyrins 1X,8,'' and apoMbI2 (horse heart or sperm whale) are 
prepared by well-known methods. Reconstitution follows es- 
tablished literature procedures.l3 The product is purified on 
a Sephadex (3-25 column, followed by elution a t  p H  7.0 from 
a CM-52 ion-exchange column (see below). The following 
nomenclature is used in this paper for these green proteins: Zn- 
or Mg-PChl-Mb for the zinc- or magnesium-pyrochloro- 
phyllide-apoMb complexes.I4 Appropriate model compounds 
for histidine ligation in the protein are  Zn- or Mg-PChl cou- 
pled15 to 3 4  I-imidazolyl)pr~pylamine~~-~~ (Rz in Figure I ,  
Zn- or Mg-Pimc). 

In addition to  the spectroscopic evidence presented below, 
several analytical methods have been used to prove that the 
PChl is bound in the heme pocket. After being exhaustively 
dialyzed against deionized water, lyophilized a t  I 0-3 Torr, 
weighed, and redissolved in water, Zn-PChl-Mb exhibits a n  
extinction coefficient a t  661 nm of 5.7 f 0.2 X lo4 cm-' M-l. 
This compares with an extinction coefficient for Zn-Pimc of 
6.5 f 0.2 X IO4 cm-I M-I, suggesting that a 1:l complex has 
been formed. When native M b  is mixed with Zn-PChl under 
the conditions of reconstitution, the electronic absorption 
spectrum of the eluate from the Sephadex column shows that  
-20% of the protein contains Zn-PChl. However, after eluting 
from the CM-52 column, the Zn-PChl is quantitatively re- 
moved, giving native Mb. From this we conclude that it is 
possible to bind additional Zn-PChl on the protein surface, but 
a n  ion-exchange column removes the loosely bound chromo- 
phore. It has been known for many years that the dye l-ani- 
lino-8-naphthalenesulfonate (ANS)  binds selectively in the 
heme pocket of apoMb.19 When Zn-PChl-Mb is treated with 
A N S  in phosphate buffer under conditions suitable for A N S  
insertion, the A N S  is recovered quantitatively by dialysis. We 
conclude that no vacant binding sites are available, and, taken 
together, these experiments prove that the chlorophyllide is 
substituted for hemin in our complex. 

The electronic absorption, circular dichroism, and magnetic 
circular dichroism spectra of Mg-PChl-Mb and Mg-Pimc are 
compared in Figure 2. The absorption and fluorescence (not 
shown) spectra a re  very similar, indicating that  the chromo- 
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Figure 2. Comparison of (A )  electronic absorption, (B) circular dichroism, 
and (C) magnetic circular dichroism spectra ( 1  5-Kg external magnetic 
field, corrected by subtracting CD), I-cm path length at 20 "C for (-) 
Mg-PChl-Mb, M in H 2 0 .  and (...) Mg-Pimc, M i n  
CHzCI2. 

phore is found in monomeric form in a nonpolar environment.20 
It is seen in Figure 2B that the C D  associated with each tran- 
sition is profoundly affected by the presence of the protein. In  
particular the rotation associated with the main red band at  
664 nm is inverted and shifted when the chromophore is in the 
protein. This contrasts with the M C D  spectra, which are  vir- 
tually identical (Figure 2C). 

A variety of factors can be considered to explain the C D  
spectra. W e  have shown (unpublished results) that the imid- 
azole in Mg-Pimc coordinates specifically on the side of the 
macrocycle from which it emerges a t  the asymmetric center 
a t  position 7 (see Figure 1); this could be opposite to that in the 
protein. However, the C D  spectra of solutions of monomeric 
Mg-PChl in ether2I and pyridine, where the ligand is bound 
on either or both sides, a re  very similar to that of Mg-Pimc. 
Instead, it is reasonable to suggest that the observed change 
is a consequence of the interaction between the chiral chro- 
mophore and the chiral environment found in the protein. It 
is well known that the protein imparts an asymmetry to non- 
chiral chromophores, but we are surprised that this effect is 
sufficient to reverse the large intrinsic rotation of the Mg-PChl 
chromophore. This result is significant because C D  has been 
used extensively as a probe for interchromophore exciton 
coupling in intact photosynthetic organisms, reaction centers, 
and antenna chlorophyll-protein c ~ m p l e x e s . ~ * - ~ ~  The analysis 
of this effect assumes that the chirality of the protein plays a 
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question and specify the absolute orientation of the chromo- 
p h ~ r e . ~ ~  

In conclusion, the properties of Mg-PChl in M b  are  re- 
markably similar to those in organic solvents, with the excep- 
tions of the C D  spectrum and the triplet state E S R  parame- 
t e r ~ . ~ '  These molecules a re  the first well-defined chloro- 
phyll-protein complexes containing a single c h r ~ m o p h o r e ~ ~  
and promise to be most useful for single crystal spectroscopy 
(suitable crystals are  in hand). Parallel work with the bacter- 
iochlorophyllides and other chlorophyll derivatives is underway 
and will be reported shortly. 
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negligible role compared with interchromophore interactions, 
which can be analyzed with the well-established exciton-CD 
formalism.25 Although the particular effects that we observe 
in Mg-PChl-Mb are  not transferable to photosynthetic re- 
action centers, the chromophores are believed to interact with 
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are compared in Figure 3.28 For CO-Fe(I1)-Mb, transitions 
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Book Reviews 

Mathematical Foundations of Quantum Theory. Edited by A. R. 
MARLOW (Loyola University, New Orleans). Academic Press, New 
York. 1978. x + 372 pp. $22.00. 

This book consists of presentations to a conference at Loyola Uni- 
versity (June 2-4, 1977) by 19 contributors including, most notably, 
P. A. M. Dirac and John Archibald Wheeler. Wheeler analyzes the 
“dclayed-choice” double-slit diffraction experiment, from which 
follows some fascinating speculations concerning the organization of 
the universe. The past, proposes Wheeler, may be determined partly 
by actions in the present: “present choice influences past dynamics”; 
“the past has no existence except as it is recorded in the present.” Also 
implied is that we might live in a “participatory universe” in which 
“ n o  phenomenon is a phenomenon until . . . it is an observed phe- 
nomenon.” Most of the other contributions are of a highly technical 
nature, concerning quantum logics, orthomodular structures, C*- 
algebras, and the like. 

S .  M. Blinder, Unicersity of Michigan 

Quantum Chemistry. By J. P. LOWE (Pennsylvania State University). 
Academic Press, New York. 1978. xvi + 599 pp. $49.50. 

This is a textbook on quantum chemistry for graduate students and 
advanced undergraduates. The Schradinger equation and the requisite 
principles of quantum mechanics are developed along standard lines, 
but the writing is distinguished by clarity and style. The focus of the 
book is on ground-state molecular-orbital theories. Full chapters are 
devoted to the simple Huckel method, the extended Huckel method, 
and SCF-LCAO-MO methods. Detailed derivation is given of the 
basic SCF equations, partly in an appendix. The variational method 
and its matrix formulation, perturbation theory, and group theory are 
covered i n  individual chapters, with emphasis quite appropriately on 
chemical applications rather than mathematical rigor. A concluding 
chapter deals with qualitative molecular orbital theories, featuring 
Walsh diagrams and the Woodward-Hoffmann principles. Some 90 
pages of appendices include mathematical supplements to the text, 
a listing of Hiickel MOs ,  computer programs, and group-theoretical 
tables. Each of the 14 chapters contains a selection of problems and 
references. Readers of Lowe’s book should acquire an excellent ap- 
preciation of the present status of both ab  initio and semiempirical 
quantum chemistry. Only its rather steep price might deter the book’s 
adoption as a course text. (Recently, however, a paperback student 
edition has appeared costing $19.50.) 

S. M. Blinder, University of Michigan 

Affinity Chromatography. Journal of Chromatography Library. 
Volume 12. By J.  TURKOVA (Prague). Elsevier Scientific Publishing 
Co., Amsterdam. 1978. ix + 405 pp. $69.75. 

The uniquely specific complexes which form between many bio- 
logically important substances have in recent years provided the basis 
for a wide variety of analytical and preparative techniques useful for 
diagnostic medicine as well as fundamental research. This new 
monograph on affinity chromatography is an exhaustive treatment 
of one of the more important of these techniques. Historical per- 

spective, theoretical background, laboratory practice, and existing 
Lipplications are presented in an organized and lucid manner. The text 
will be very useful to both experts and newcomers to this important 
experimental technique. A very useful feature is the extensive tabu- 
lation of applications of affinity chromatography to the isolation of 
biologically active products including antibodies, antigens and hap- 
tens, cells and organelles, cofactors, enzymes, glycoproteins, proteins, 
and nucleic acids, etc. Some attention is also given to hydrophobic 
chromatography and immobilized enzymes, topics not inclusive to the 
title of this excellent effort. 

Peter T. Kissinger, Purdue Unicersity 

Cyclodextrin Chemistry. Reactivity and Structure Concepts in Organic 
Chemistry. Volume 6. By M. L. BENDER and M. KOMIYAMA 
(Northwestern University). Springer-Verlag, Berlin. 1978. x + 96 

Cyclodextrins are fascinating substances which make very good 
enzyme models. But they are much more than just that: they can make 
simple organic reactions quite stereospecific, they stabilize free rad- 
icals, and they even improve the efficacy of cockroach poison! In this 
small book these and other aspects of the chemistry of cyclodextrins 
are reviewed by one of the leading investigators in the field. 

Myron Bender wrote another review of cyclodextrin chemistry some 
six years ago [Advances in Catalysis, 23,209 (1973)l. This book is 
a much expanded and completely rewritten version of that review; it 
has, for example, three times the number of references, which attests 
to the very rapid recent growth of interest in this subject. Although 
the emphasis in this book is on catalysis by cyclodextrins through in- 
clusion of substrates into their central cavities, and what can be learned 
from this about catalysis by enzymes, there are sections on the prop- 
erties and structure of cyclodextrins as well as a thoughtful analysis 
of the forces that bind substrate and catalyst together. 

I enjoyed reading this book. I am sure that chemists working with 
cyclodextrins will find it a valuable reference work and that others who 
read it  will discover that it contains some very interesting chem- 
istry. 

A. J. Kresge, Uniaersity of Toronto, Scarborough College 

Applications of Polymer Spectroscopy. Edited by E. G. BRAME, JR. 
(E.I. du Pont de Nemours & Co.).Academic Press, Inc., New York. 
1978. xiv + 289 pp. $29.50. 

This book is based on the papers presented at  the American 
Chemical Society meeting in San Francisco in 1977; however, as the 
editor states, it contains new and updated material in addition to that 
presented at the meeting. The collection of 16 papers deals with three 
important areas of application of spectroscopy for structural studies: 
NMR,  IR, and mass spectroscopy. The first group of seven papers 
contains coverage of the use of carbon-13, proton and fluorine-19 
N M R  for determination of polymer structure including studies of 
cis-trans and 1,2-1,4 isomerism, determination of copolymer com- 
position and comonomer sequence distribution, end-group analysis, 
determination of the degree of branching, and studies of conforma- 
tional transitions in amorphous and semicrystalline polymers, as well 

pp. $22.00. 


