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The derivation of the ~FK~CIIVC Index (ir) correefion in iumrne~ence spectroscopy ts evtanded to cases ~8th wide ever- 
t&on beams. The accepted “l/n’ correctton” IS found to be v&d for a Iargc number of cupcrunent.d arrangements m con- 
frasl to the anJys~ ofe rcccnt paper. 

1. Introduction 

For more than thirty years, rnvestrgators have rec- 
ognized that luminescence measurements made with 
certam experimental geometries require corrections 
for the refractive index of the solution [I,?]. These 
corrections are necessary when the ratio of lumines- 
cence from two solutrons IS required, as in relatrve 
quantum yield measurements [3]. In many cases, the 
m~gnttude of these corrections is not smalI. The wtde- 
ly utilized “Ifrz2 correctron”, for example, amounts 
to more than 25% when comparing solutrons in ben- 
zene (n = 1.50) and water (n = 1.33). Recently there 
has been some discussion regarding the appropriateness 
of this correctron 14). In thrs paper, we extend the 
analysis of the index of refraction correctron, and 
show that a correction factor of i/n2 is approp~ate 
for common cxper~ment~ geometries. 

2. Previous approaches 

Many experimentahsts have used the correction 
derived by Hemms and Levmson [I] for the right 
angle geometry (i.e_ collection optics norm3l to a 

cuvette surface and pe~endicular to the excitation 
beam, as m fig. 1). The expression they derived forJ, 
the collected tight intensity (light passing through a 
monochromator sbt), 

J = isls$t/n2b2 2 (1) 

V V 
I I 

Tip. 1 Evperimcntd geometry. C: euatation berm of wrdth 
/I; H: cuvctte; L: lens of sea SI and dnmcter d; S: slit of 
3re3 s2; S’. position of sht image m au (n = I), s”: PosltlOn 
of SIII lmagc in P solution of rehcttve mdev n,c. drstdnce 
from S’ to cuwettc front,a, b. drstrtnccs as shown. 

IS valid when the coflectron optrcs sample a unrformly 
Iummescent area of’ the cuvette and the solid angle of 
light collected IS small (I.e. paraxial conditrons, 
sm 0 25 0). In eq. (I), I is proportronrl to the emissron 
rntensity u-r the direction of the collection optics and 
all other quantrties are defined m fig. I. 

Tlus derivation 1s stnctIy v&d only when the exci- 
tstton bertm cont3m.s the stit Image and m the hmrr 
rhat the width of the exclrarion beam, If, 15 small. 
Hermans and Levmson [I 1 only consider lrght commg 
from the plane defined by the image of the slit in the 
solution (sht Image pIane, S”), and USC the sohd angle 
subtended by the lens to calculate the fraction of this 
light passmg through the slit (see eqs. (7) and (8) in 
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ref. [ l]. They apply the results of this analysis to 
pomts in front and behmd the slit image plane. Now- 
ever, not all of the solid angle of light collected by 
the lens from these points necessarily passes through 
the sht, as will become clear in section 3. Despite the 
iimitations of the earher derivatton, a more detailed 
analysis (section 3) wtli show that for many typical 
geometnes involvmg excltatton beams of reasonable 
width, eq. (1) IS m fact valid. 

A recent paper by Busselle et al. [4] concludes 
that the n2 factor is not requtred tn eq. (1). Their deri- 
vatton IS essentially the same as the one outlined above 
except that the authors state that the slit Image area 
m a solutron of refractive index n isnz%# (m our 
notation), where m is the magnification of the optical 
system. Ths IS Incorrect. The correct area IS m2s2, as 
can be seen by examining fig. 2. 

In fig. Za, the Image of point A IS formed where the 
two light rays shown intersect at B [S]. Ail other rays 
starting from A and passing through the lens also in- 
tersect at B. 

In fig. Zb, we consider the case in which the image 
of A IS formed inslde a solution of refractive index II. 
Since the ray through C is not refracted at the solu- 
tion-air interface, the tmage of point A is formed at 
the same distance from the optical axis as in fig_ ?a. 
Thus, m this example, the image of the arrow wti be 
the same size m the two figures, although located at 
different positions. For any optical system in which 

IMAGE OBJECT 

Fg. 2. Image size as a function ofn. Fi, F2: focal pomts; 
H: cuvette wall. The dotted line is the optical axis. 

an image is formed, this is true as long as the optical 
axis IS normal to the interface of the two media. (This 
is the case treated by Busselle et al. and thts paper.) 
If the arrow is replaced by a two.dimenstonal object 
(e.g. a slit), the Image size wzll also be independent of 
the refractive index as above. 

When the analysis of Busseiie et al. is modified 
usmg the correct expression, m&2, as the sht image 
area, thetr equation for the relative hninescence in- 
tensitles of two solutions of different refractive m- 
dex becomes 

This result 1s consistent with eq. (1). 
The two dertvations noted thus far are incomplete 

smce they apply only in the slit image plane. For an 
excltatlon beam of a width typically used m an ex- 
periment, the applicabdity of these results IS not ob- 
vious. Furthermore, since the sltt image position 
changes with n, a very thm beam will fu~f~ the con- 
ditions of the derivation only If Its position m the 
cuvette is adjusted as a function of the refractive m- 
dex of the solution. 

In order to have confidence tn experimental results 
obtamed under typical laboratory conditions, a more 

complete theorettcd ~~ysis is needed, We will use 
a nurn~~c~ c~cu~a~ton based on geo~t~c optics 
that considers not only emission from points in the 

slit image plane, but also from pomts a fite distance 
away from it. This necessitates a numertcai tntegral 
over the entire volume illuminated within the cuvette. 

Using geometric optics, one can demonstrate that 
the collection system shown in fig. 1 is equivalent to 
that of fig. 3 for the purpose of calculating the light 
intensity passing through the slit. In fig. 3 the index 
of refractton is taken to be the same inside and out- 
side the cuvette, and this change is compen~ted for 
by replacing 6 with e/n and a by nu. This approach 
eliminates the need to explicitly include the effects 
of Snell’s law in the analysis. We assume paraxial con- 
ditions. (The cuvette walls are taken to be thin for 
the case shown in fig. 3, although this is not necessary. 
The results presented will be correct for any reasonable 
wail thickness.) The &it and lens were chosen to be 
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Fig. 3. Geometry of equivalent optrwl system. See text and 
previous feure captions for delhtions of symbols. 

circular to gwe the problem cyhndncal symmetry. 
The precise shape of these elements does not affect 
the results presented. Ttus was verified by also per- 
forming the calculation for the case of a rectangular 
sht and a circular lens (see section 4). The descnption 
that follows is given in terms of the sunpler case with 
cylindrical symmetry. 

We need to calculateJ, the light Intensity passing 
through the slit, for a given geometry (fued o, c, d, 
h, n, and the sht image area III fig. 3). Due to the 
cylindrical symmetry of the problem, we work m a 
coordinate system in whichx is the axis of symmetry 
andy is perpendicular to it. First, treat a point (x,~) 
in the dluminated region of the cuvette as an isotropic 
emitter and calculate F, the fraction of light from 
(x.y) passing through the sltt. Second, weight F by 
the volume element, Z~A~AX, where AX and Ay 
are the step sizes for the numerical integration. Fiial- 
ly, integrate over the appropriate volume (i.e. sum 
the weighted fractions to obtain J). 

To carry out the above procedure, we need a meth. 
od for calculating F. Not every photon passing through 
the lens contributes toJ. In order for a photon to pass 
through the slit, it must go through the lens and 
either (i) come from S”, or (ii) be traveling with a 
trajectory such that its path IS indistinguishable from 
that of a photon originating in S”. Therefore, only 
points within the labeled regions of fig. 4a can con- 
tnbute to the integration. Of course, since only IUU- 
minated molecules can emit, the location and width 
of the excitation beam further limits the integration 
volume. At any (KY), the fraction of light passmg 

It-h--4 It-no-44 

I I 

bl  

Fig. 4. (a) Different regrons whxh can contrtbute to tlux 
through the It. (b) ProJeclion of the It image, S”. through 
(x. y) onto the plane of the lens. The lntersectlon of Ihs 
cucle (dumeter d’, center at C) with Ihe lens (dwmeter d) 
@“es the Y~ZI needed to detemune the s&d angle used m 
the calculation of the fractton of Irght enten@ the slit for 
any cr the regions shown m (a). For (x.y) behmd the 61 
image, the projection of9 is found by drawmg hnes from 
(x,~) through the two edges of S”, and extendmg these 
lmes to the plane which contains the lcne (Note IIWL this 
fgure appbs to the case of cyhndrical symmetry dcxnbed 
in section 3 ) 

through the lens LS Q/47?, where Q IS the sohd angle 
subtended by the lens. Only in regron I, however, does 
alI this l&t pass through the sht. Thus in region I, 
F= Q/477. In any other labeled region, part of the 
light passing through the lens wdl be refracted such 
that it does not pass through the slit. To fiid F, it is 
necessary to project S” through (x,y) onto the plane 
which contains the lens (see lig. 4b). The area of inter- 
section of this crrcle (the projection of S”) and the 
lens, divided by the square of the &stance between 
(x,y) and the center of the Intersection area, IS the 
sohd angJe of hght which contributes to flux fbrougb 
the slit. This solid angle divided by 477 IS F for any 
region in fig. 4a. Outside the labeled regons, the area 
of intersection of the two circles. and hence F, is zero. 
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In addttlon to paraxial conditions, we have as- 
sumed that the chromophores in solution are random- 
ly oriented and that the solution IS uniformly luminc- 
scent over the volume defined by the width I1 and the 
areas sampled by the skt. 

We should emphasize that this ~~~u~~~ion was per- 
formed oniy for rhe simple collection optics shown 
in fig. 1. 0th optical systems could bc treated in an 
analogous manner. Furthermore, these calculations 
do not Include the effects of reflective losses at the 
solutton-cuvctte mterfaces. The magnitude of this 
effect (for both cxcltation and emission) is easily in- 
cluded m the anatysls of expertmental data, and will 
change the ratio of the intensitiesJtj.fz by fess than 
1% for a quartz cuvette and solution refracttve in- 
dices between 1.33 and 1.5. Ignoring tbc angular de- 
pendence of the reflective loss introduces an error of 
less than O.l%given paraxial conditions. 

4. Results 

Calculations were performed for geometnes en- 
compassing most common experimental arrangements 
of collection optics. For each geometry, hgbt mtensi- 
ties for solutions of two different refractive indices 
(‘It = 1.33,“2 = 1.5) were c~culated. The ratio of 
the mtensitiesJtfJ2 was compared to (tz&t)?-. These 
quantities were identical to within 0.5% for ali cases 
reported in table 1. Excluding cases where 0 approach- 
ed 10’ (see fig. I), these quantities were identical to 
withm 0.2%. These results are valid for all Iz 2 1 mm 
and all excttatjon beam locations possible m a 1 cm 
cuvette. They are independent of the magni~cation 
of the opticai system. (Note that the sltt image radius 
IS used in tabte I .) IlIe posttion of the slit image was 

Table 1 
Typical gcometncs examined 

Lens-cuvette Range of lens Range of sbt 
dasrance {cm) diameters (cm)~~ image &meters (mm) 

4 0.6-I .3 0.04-4 0 
12 1 O-4.0 0.04-a 0 
20 1 O-6.6 0.04-4.0 

3 The uppcr limits in thii column dcfie the maximum lens 
size utlowabie witbin the para~ial condition assumed in 
these ulculations. 
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varted +I cm from the center of the cuvette (except 
for the first hne of table 1, where k0.5 cm was used). 
In addition to verifying that the I/$ correction is 
accurate within the iimits described above, our caku- 
lations also show that the scaling for sI , s2 and h pre- 
dicted by eq. (1) IS approximately correct. Cases in- 
termed&e to those shown in table 1, or with a smaller 
difference between 11, and !t2, also gave results con- 
sistent wtth those described above. 

As noted in section 3, the case of a rectangular slit 
and clrculat lens was also treated. A range of slit heights 
(O-04- 10 mm) and slit widths (0.04-3 mm) was con- 
sidered for cases analogous to those in table 1. @z-&z~)~ 
and the numerically cakulated value for Jt & were 
ldenttcal wlthin the hmlts specified above, except m 
a few instances (e.g. extremely narrow slits). For the 
latter cases, the larger deviation arose because the 
numerical integration was termmated before conver- 
gence to avoid excesswe consumption of computer 
time. Even so, these two quantities were wit~n 2.5%, 
and extrapolation of the calculated values ofJlIJ2 
as a functton of the step size Indicated that further 
decreases m step size would result m convergence 
within the gven hmlts. 

In summary, we have corrected the treatment of 
Bussellc et al. and extended the analysts of the re- 
fractive index correctzon to cases where the excrta- 
tton beam 1s not thin. For the situations described in 
this section and in table I, the litz2 caIing predicted 
by Hermans and Levmson [ 11 is found to be correct. 
It should be emphasized that these results apply only 
m the paraxial limit for a solution which is uniformly 
lummescent over the volume sampled by the slit. As 
BusselIe et al. have pointed out, the fatter condition 
IS often not met wtth respect to slit height. An addi- 
tlonat correction (see section 3) due to reflective loss 
at the cuvette-solution interfaces should be Included 
to complere the analysis of experimental data. InvestI- 
gators utdizmg experimental conditons simiiar to 
those described here should feel confident in applymg 
the l/n2 correction. The correction for systems of 
collectron optics much different than those described 
here could be calculated using the procedure outlined 
in this paper. 
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