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The denvation of the refractive index (1) corrcction in lumnescence spectroscopy i1s extended to cases with wide excr-
tation beams. The accepted **{/n* correction™ 1s found to be vahd for a large number of experunental arrangements w con-

trast to the analysis of a recent paper.

1. Introduction

For more than thirty years, mvestigators have rec-
ognized that luminescence measurements made with
certamn experimental geometries require corrections
for the refractive index of the solution [1,2]. These
corrections are necessary when the ratio of lumines-
cence from two solutions 1s required, as in relative
quantum yield measurements [3]. In many cases, the
magnttude of these corrections is not small. The wide-
ly utilized ““1/n? correction™, for example, amounts
to more than 25% when comparing salutions in ben-
zene (2 = 1.50) and water (7 = 1.33). Recently there
has been some discussion regarding the appropriateness
of this correction [4]. In this paper, we extend the
analysis of the index of refraction correction, and
show that a correction factor of 1/n2 is appropnate
for common experimental geometries.

2. Previous approaches

Many experimentalists have used the correction
derived by Hermans and Levinson [1] for the right
angle geometry (i.e. collection optics normal to a
cuvette surface and perpendicular to the excitation
beam, as in fig. 1). The expression they derived for /J,
the collected light intensity (light passing through a
monochromator sht),

J =Is;syhin?b? 6}
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Iig. 1 Experimental geometry. E: excitation beam of width
fr; H: cuvette; L: lens of area sy and diamcter d; S: slit of
area s; S’. position of sit image in awr (1 = 1), 8”: posiion
of shit image in a solution of refractive index n, ¢. distance
from §’ to cuvette front, a, b. distances as shown.

1s valid when the collection optics sample 2 uniformly
luminescent area of the cuvette and the solid angle of
light collected 1s small (1.e. paraxial conditions,

sin @ =), In eq. (1), [ is proportional to the emission
mtensity in the direction of the collection optics and
all other quantities are defined in fig. 1.

Tlus derivation 1s strictly valid only when the exci-
tation beam contans the slit image and in the limat
that the width of the exciation beam, A, 15 small.
Hermans and Levinson [1] only consider kight coming
from the plane defined by the image of the slit in the
solution (sht 1mage plane, S”), and use the sohd angle
subtended by the fens to calculate the fraction of this
light passing through the shit (see egs. (7) and (8) in
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ref. [1]. They apply the results of this analysis to
points in front and behind the slit image plane. How-
ever, not all of the solid angle of light collected by
the lens from these points necessarily passes through
the slit, as will become clear in section 3. Despite the
limitations of the earler derivation, a more detailed
analysis (section 3} will show that for many typical
geometnes involving excitation beams of reasonable
width, eq. (1) 1s 1n fact valid.

A recent paper by Busselle et al. {4] concludes
that the n2 factor is not required 1n eq. (1). Their deri-
vation 1§ essentially the same as the one outlined above
except that the authors state that the slit image area
1 a solution of refractive index n is m%s,n% (1n our
notation), where m is the magnification of the optical
system. This 15 mcorrect. The correct areais mzsz, as
can be seen by examining fig. 2.

In fig. 2a, the image of point A 1s formed where the
two light rays shown intersect at B [5]. All other rays
starting from A and passing through the lens also in-
tersect at B.

In fig. 2b, we consider the case in which the image
of A s formed inside a solution of refractive index »n.
Since the ray through C is not refracted at the solu-
tion—air interface, the 1image of point A is formed at
the same distance from the optical axis as in fig. 2a.
Thus, mn this example, the image of the arrow will be
the same size in the two figures, although located at
different positions. For any optical system in which

OBJECT
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Fig. 2. Image size as a function of n. Fy, Fy: focal pomts;
H: cuvette wall, The dotted line is the optical axis.
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an image is formed, this is true as long as the optical
axis 1s normal to the interface of the two media. (This
is the case treated by Busselle et al. and this paper.)
If the arrow is replaced by a two-dimensional object
(e.g. a slit), the image size will also be independent of
the refractive index as above.

When the analysis of Busselle et al. is modified
using the correct expression, m2s,, as the sht image
area, their equation for the relative luminescence in-
tensities of two solutions of different refractive in-
dex becomes

N Ty =3 iyng . @

This result 1s consistent with eq. (1).

The two denwvations noted thus far are incomplete
since they apply only 1n the slit image plane. For an
excitation beam of a width typically used n an ex-
periment, the applicabulity of these resuits 1s not ob-
vious. Furthermore, since the shit image position
changes with n, a very thin beam will fulfill the con-
ditions of the derivation only i1f 1ts position in the
cuvette is adjusted as a function of the refractive n-
dex of the solution.

In order to have confidence in experimental results
obtamed under typical laboratory conditions, a more
complete theoretical analysis is needed, We will use
a numerical calculation based on geometric optics
that considers not only emission from points in the
slit image plane, but also from points a finite distance
away from it. This necessitates a numerical tntegral
over the entire volume illuminated within the cuvette,

3. Description of calculations

Using geometric optics, one can demonstrate that
the collection system shown in fig. 1 is equivalent to
that of fig. 3 for the purpose of calculating the hght
intensity passing through the slit. In fig. 3 the index
of refraction is taken to be the same inside and out-
side the cuvette, and this change is compensated for
by replacing 6 with 8/n and a by na. This approach
eliminates the need to explicitly include the effects
of Snell’s law in the analysis. We assume paraxial con-
ditions. (The cuvette walls are taken to be thin for
the case shown in fig. 3, although this is not necessary.
The results presented will be correct for any reasonable
wall thickness.) The slit and fens were chosen to be
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Fig. 3. Geometry of equivalent optical system. See text and
previous figure captions for defimtions of symbols.

circular to give the problem cylindncal symmetry.
The precise shape of these elements does not affect
the results presented. This was verified by also per-
forming the calculation for the case of a rectangular
sht and a circular lens (see section 4). The descnption
that follows is given in terms of the simpler case with
cylindrical symmetry.

We need to calculate J, the light intensity passing
through the slit, for a given geometry (fixed a, ¢, d,

h, n, and the shit image area in fig. 3). Due to the
cylindrical symmetry of the problem, we work in a
coordinate system in which x is the axis of symmetry
and y is perpendicular to it. First, treat a point (x, y)
in the dluminated region of the cuvette as an isotropic
emitter and calculate F, the fraction of light from

(x, y) passing through the shit. Second, weight F by
the volume element, 2nyAyAx, where Ax and Ay

are the step sizes for the numerical integration. Final-
ly, integrate over the appropriate volume (i.e. sum
the weighted fractions to obtain J).

To carry out the above procedure, we need a meth-
od for calculating £. Not every photon passing through
the lens contributes to J. In order for a photon to pass
through the slit, it must go through the lens and
either (i) come from S”, or (ii) be traveling with a
trajectory such that its path 1s indistinguishable from
that of a photon originating in §”. Therefore, only
points within the labeled regions of fig. 4a can con-
tnbute to the integration. Of course, since only llu-
minated molecules can emit, the location and width
of the excitation beam further limits the integration
volume. At any (x, y), the fraction of light passing
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Fig. 4. (a) Different regions which can contribute to flux
through the sht. (b) Projection of the sht image, S”, through
(x, ¥) onto the plane of the lens. The mtersection of this
circle (duameter d’, center at G) with the lens (diameter d)
gives the area needed to determune the solid angle used
the calculation of the fraction of lght entenng the slit for
any of the regions shown 1n (2). For (x, ») behind the slit
image, the projection of S” is found by drawing lines fram
(x, ¥) through the two edges of S”, and extending these
hnes to the plane which contains the lens. (Note that this
figure apphes to the case of cylindrical symmetry descnibed
in section 3)

through the lens 1s /47, where S 1s the solid angle
subtended by the lens. Only in region I, however, does
all this light pass through the sht. Thus in region I,
F=Q/4n. In any other labeled region, part of the
light passing through the lens will be refracted such
that it does not pass through the slit. To find F, it is
necessary to project S through (x, ¥) onto the plane
which contains the lens (see fig. 4b). The area of inter-
section of this curcle (the projection of §”) and the
lens, divided by the square of the distance between
(x,») and the center of the mtersection area, 1s the
solid angle of hight which contributes to flux through
the slit. This solid angle divided by 4 1s F for any
region in fig. 4a. Outside the labeled regons, the asea
of intersection of the two circles, and hence F, is zero.
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In addition to paraxial conditions, we have as-
sumed that the chromopliores in solution are random-
ly oriented and that the solution 1s uniformly lumine-
scent over the volume defined by the width &t and the
areas sampled by the suit.

We should emphasize that this calculation was per-
formed only for the simple collection optics shown
in fig. 1. Owicr opuical systems could be treated in an
analogous manner. Furthermore, these calculations
do not include the effects of reflective losses at the
solution—cuvette interfaces. The magmtude of this
effect (for both excitation and emission) is easily in-
cluded n the analysis of expenimental data, and will
change the ratio of the intensities J, /5 by less than
1% for a quartz cuvette and solution refractive in-
dices between 1.33 and 1.5. Ignonng the angular de-
pendence of the reflective loss introduces an error of
less than 0.1% given paraxial conditions.

4. Results

Calculations were performed for geometnes en-
compassing most comnion experimental arrangements
of collection optics. For each geometry, hght intensi-
ties for solutions of two different refractive indices
(1, = 1.33, n, = 1.5) were calculated. The ratio of
the intensities J; A/, was compared to (n5/n; ). These
quantities were identical to within 0.5% for all cases
reported in table 1. Excluding cases where 8 approach-
ed 10° (see fig. 1), these quantities were 1dentical to
withmn 0.2%. These resuits are valid for all # 2 1 mm
and all excitation beam locations possible ma 1 ecm
cuvette. They are independent of the magmification
of the optical system. (Note that the sht #nage radius
1s used in table 1.} The position of the slit image was

Table 1
Typical geometrics examined

Lens—cuvette
distance {cm)

Range of lens Range of shit
diameters {em)3)  image diameters {mm)

4 0.6—-1.3 0.04-40
12 10-4.0 0.04-40
20 10-6.6 0.04-4.0

2) The upper limits in this column define the maximum lens
size allowable within the paraxial condition assumed in
these calculations.
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varted 1 ¢cm from the center of the cuvette (except
for the first ine of table 1, where £0.5 cm was used).
In addition to verifying that the 1/n2 correction is
accurate within the limits described above, our calcu-
lations also show that the scaling for 54, 5, and & pre-
dicted by eq. (1) 1s approximately correct. Cases in-
termediate to those shown in table 1, or with a smaller
difference between ,; and n,, also gave results con-
sistent with those descnbed above.

As noted 1n section 3, the case of a rectangular slit
and circular lens was also treated. A range of slit heights
(0.04—10 mm) and slit widths (0.04—3 mm) was con-
sidered for cases analogous to those in table 1. (n5/n;)?
and the numerically calculated value for J| /7, were
identical within the linits specified above, except 1n
a few wnstances (e.g. extremely narrow slits). For the
latter cases, the larger deviation arose because the
numerncal integration was ternunated before conver-
gence to avoid excessive consumption of computer
time. Even so, these two quantities were within 2.5%,
and extrapolation of the calculated values of J} /7,
as a function of the step size indicated that further
decreases 1n step size would result in convergence
within the given himits.

In summary, we have corrected the treatment of
Busselle et al. and extended the analysis of the re-
fractive index correction to cases where the excita-
tion beam 15 not thin. For the situations described in
this section and in table I, the (/12 caling predicted
by Hermans and Levinson [1] is found to be correct.
1t should be emphasized that these results apply only
in the paraxial limut for a solution which is uniformly
luminescent over the volume sampled by the slit. As
Busselle et al. have pointed out, the latter condition
1s often not met with respect to slit height. An addi-
tional correction (see section 3) due to reflective loss
at the cuvette—solution interfaces should be included
to complete the analysis of experimental data. Investi
gators utdizing experimental conditons simifar to
those described here should feel confident in applying
the 1/n? correction. The correction for systems of
collection optics much different than those described
here could be calculated using the procedure outlined
in this paper.
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